Surface Morphology and Sensing Property of NiO-WO3 Thin Films Prepared by Thermal Evaporation

نویسندگان

  • Dong-myong Na
  • L. Satyanarayana
  • Gwang-Pyo Choi
  • Yong-Jin Shin
  • Jin Seong Park
چکیده

WO3 and NiO-WO3 thin films of various thicknesses were deposited on an Al2O3-Si (alumina-silicon) substrate using high vacuum thermal evaporation. After annealing at 500C for 30 minutes in air, the crystallanity and surface morphology of WO3 and NiO-WO3 thin films were investigated using X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). It is observed that the WO3 thin films were resulted in cracks between the polycrystalline grains and the grain growth was increased with increasing thickness causing deteriorated sensing characteristics of the films. On the other hand, an optimum deposition of NiO on WO3 thin film has inhibited the grain growth and improved the sensitivity of the films. The inhibition is limited to a certain thickness of WO3 and NiO content (mol %) of inclusion and below or above this limitation the grain growth could not be suppressed. Moreover, the deposition sequence of NiO and WO3 is also playing a significant role in controlling the grain growth. A probable mechanism for the control of grain growth and improving the sensing property has been discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced methanol sensing performance of oblique deposited WO3 thin films

Methanol (CH3OH) is a colorless liquid with a mild odor. The wide ranges of applications, toxicity and clinical implications of methanol have made necessary to develop reliable and high-performance methanol sensors. In this paper, WO3 thin films were deposited on SiO2/Si substrates by e-beam evaporation technique under normal and oblique angles and then post-annealed at 500 °C with a flow of ox...

متن کامل

p-TYPE TRANSPARENT NiO THIN FILMS BY e-BEAM EVAPORATION TECHNIQUES

Nickel oxide (NiO) semiconductors thin films were prepared by e-beam evaporation technique at different substrate temperatures ranging from room temperature to 400 C on glass substrate. Glancing incident X-ray diffraction depict that with the increases in substrate temperature the preferred orientation changes from (111) to (200) direction. Atomic force microscopy was used to investigate the su...

متن کامل

Improving Electrochromic Properties of WO3 Thin Film with Gold Nanoparticle Additive

In this research, WO3 and Au-WO3 thin films were prepared at different temperatures using the sol gel method. The effect of gold nanoparticles (GNPs) on the electrochromic properties of WO3 was also studied. 2.5 nm GNP was synthesized through sodium citrate reduction of gold chloride in an aqueous solution. These films were characterized by XRD, SEM, TEM, and spectrophotometer analyses. The fil...

متن کامل

Theoretical and Experimental Investigation of Optical Properties of ZnS Zig-Zag Thin Films

Zigzag ZnS thin films prepared by thermal evaporation method using glancing angle deposition (GLAD) technique. ZnS films with zigzag structure were produced at deposition angles of 0˚, 60˚ and 80˚ at room temperature on glass substrates. Surface morphology of the films w:as char:acterized by using field emission scanning electron microscopy (FESEM). The optical properties of the specimens were i...

متن کامل

Enhancement of hydrogen gas sensing of nanocrystalline nickel oxide by pulsed-laser irradiation.

This paper reports the effect of post-laser irradiation on the gas-sensing behavior of nickel oxide (NiO) thin films. Nanocrystalline NiO semiconductor thin films were fabricated by a sol-gel method on a nonalkaline glass substrate. The NiO samples were irradiated with a pulsed 532-nm wavelength, using a Nd:YVO(4) laser beam. The effect of laser irradiation on the microstructure, electrical con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2005